Study of the instability of the Poiseuille flow using a thermodynamic formalism.

نویسندگان

  • Jianchun Wang
  • Qianxiao Li
  • Weinan E
چکیده

The stability of the plane Poiseuille flow is analyzed using a thermodynamic formalism by considering the deterministic Navier-Stokes equation with Gaussian random initial data. A unique critical Reynolds number, Rec ≈ 2,332, at which the probability of observing puffs in the solution changes from 0 to 1, is numerically demonstrated to exist in the thermodynamic limit and is found to be independent of the noise amplitude. Using the puff density as the macrostate variable, the free energy of such a system is computed and analyzed. The puff density approaches zero as the critical Reynolds number is approached from above, signaling a continuous transition despite the fact that the bifurcation is subcritical for a finite-sized system. An action function is found for the probability of observing puffs in a small subregion of the flow, and this action function depends only on the Reynolds number. The strategy used here should be applicable to a wide range of other problems exhibiting subcritical instabilities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition

In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...

متن کامل

Inherent Irreversibility of Exothermic Chemical Reactive Third-Grade Poiseuille Flow of a Variable Viscosity with Convective Cooling

In this study, the analysis of inherent irreversibility of chemical reactive third-grade poiseuille flow of a variable viscosity with convective cooling is investigated. The dissipative heat in a reactive exothermic chemical moves over liquid in an irreversible way and the entropy is produced unceasingly in the system within the fixed walls. The heat convective exchange with the surrounding tem...

متن کامل

Non-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel

The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the...

متن کامل

Effect of Variable Thermal Conductivity and the Inclined Magnetic Field on MHD Plane Poiseuille Flow in a Porous Channel with Non-Uniform Plate Temperature

The aim of this paper is to investigate the effect of the variable thermal conductivity and the inclined uniform magnetic field on the plane Poiseuille flow of viscous incompressible electrically conducting fluid between two porous plates Joule heating in the presence of a constant pressure gradient through non-uniform plate temperature. It is assumed that the fluid injection occurs at lower pl...

متن کامل

A Numerical Study of Drop Motion in Poiseuille Flow

The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 31  شماره 

صفحات  -

تاریخ انتشار 2015